Answer:
[tex](x - (-4))^2 = -8(y - (-3))[/tex]
[tex]Where\ p<0[/tex]
Step-by-step explanation:
From the question we are told that:
Parabola focus co-ordinates
[tex]F=(-4, -5)\\Directrix is y = -1[/tex]
Generally the equation for standard form of Parabola is mathematically given by
[tex](x - h)^2 = 4p(y - k)[/tex]
where p≠ 0
Generally the equation for Directrix of Parabola is mathematically given by
[tex]y=k-p\\y=-1[/tex]
Generally the equation for Focus of Parabola F is mathematically given by
[tex]F=(h, k + p).[/tex]
[tex]F=(-4, -5)[/tex]
Therefore
[tex]k-p=-1[/tex]
[tex]k=-1+p[/tex]
Given
[tex]k+p=-5[/tex]
[tex]-1+p+p=-5[/tex]
[tex]2p=-4[/tex]
[tex]p=-2[/tex]
Therefore
[tex]k-p=-1[/tex]
[tex]k-(-2)=-1[/tex]
[tex]k=-3[/tex]
Generally the equation for standard form of Parabola is mathematically given by
[tex](x - (-4))^2 = 4(-2)(y - (-3))[/tex]
[tex](x - (-4))^2 = -8(y - (-3))[/tex]
[tex]Where p<0[/tex]