write an exponential formula of the form f (t)=a×b^t to represent the following situation. assume t is in years. an investment of $11,500 triples every 14 years. round your values to the three decimal places. f(t)=________​

Respuesta :

Answer

[tex]f(t) = 11500 * (3)^{\frac{t}{14}}[/tex]

Explanation

Given

[tex]a = 11500[/tex] -- initial

[tex]b = 3[/tex] ---- every 14 years

Required

The exponential equation

The exponential equation is:

[tex]y =ab^T[/tex]

First, calculate the yearly rate.

Triples every 14 years, implies that:

[tex]b = 3[/tex] -- the rate

[tex]T=\frac{t}{14}[/tex] ---- time

So:

[tex]y =ab^t[/tex]

[tex]y = 11500 * (3)^{\frac{t}{14}}[/tex]

Hence:

[tex]f(t) = 11500 * (3)^{\frac{t}{14}}[/tex]