Respuesta :
Answer:
Part A:
[tex]P_0=0.13298\\P_1=0.29547\\P_2=0.328320\\P_3=0.24321[/tex]
Part B:
[tex]P_3=0.24321[/tex]
Part C:
[tex]Average\ Number:=1.6817[/tex]
Step-by-step explanation:
Given data:
Mean =μ= 40 calls
Service Rate=λ=18 calls
Solution:
Formula:
[tex]P_i=\frac{\frac {(\frac{\mu}{\lambda}) ^{i} }{i!} }{\sum \frac {(\frac{\mu}{\lambda}) ^{i} }{i!}}[/tex]
Where i is access lines
Part A:
Probability of 0 access line, i=0:
[tex]P_0=\frac{\frac {(\frac{40}{18}) ^{0} }{0!} }{\frac {(\frac{40}{18})^{0} }{0!}+\frac {(\frac{40}{18})^{1} }{1!}+\frac {(\frac{40}{18})^{2} }{2!}+\frac {(\frac{40}{18})^{3} }{3!}}[/tex]
[tex]P_0=\frac{1}{1+2.222+2.4691+1.8290}[/tex]
[tex]P_0=0.13298[/tex]
Probability of 1 access line, i=1:
[tex]P_1=\frac{\frac {(\frac{40}{18}) ^{1} }{1!} }{\frac {(\frac{40}{18})^{0} }{0!}+\frac {(\frac{40}{18})^{1} }{1!}+\frac {(\frac{40}{18})^{2} }{2!}+\frac {(\frac{40}{18})^{3} }{3!}}[/tex]
[tex]P_1=\frac{2.222}{1+2.222+2.4691+1.8290}\\P_1=0.29547[/tex]
Probability of 2 access line, i=2:
[tex]P_2=\frac{\frac {(\frac{40}{18}) ^{2} }{2!} }{\frac {(\frac{40}{18})^{0} }{0!}+\frac {(\frac{40}{18})^{1} }{1!}+\frac {(\frac{40}{18})^{2} }{2!}+\frac {(\frac{40}{18})^{3} }{3!}}[/tex]
[tex]P_1=\frac{2.4691}{1+2.222+2.4691+1.8290}\\P_2=0.328320[/tex]
Probability of 3 access line, i=3:
[tex]P_3=\frac{\frac {(\frac{40}{18}) ^{3} }{3!} }{\frac {(\frac{40}{18})^{0} }{0!}+\frac {(\frac{40}{18})^{1} }{1!}+\frac {(\frac{40}{18})^{2} }{2!}+\frac {(\frac{40}{18})^{3} }{3!}}\\P_3=\frac{1.8290}{1+2.222+2.4691+1.8290}\\P_3=0.24321[/tex]
Part 2:
Only 3 users can access simultaneously, denied Probability is P_3(4th access line)
[tex]P_3=0.24321[/tex]
Part 3:
Average Number:
[tex]Average\ Number:\frac{\mu}{\lambda} (1-P_3)\\Average\ Number:\frac{40}{18} (1-0.24321)\\\\Average\ Number:=1.6817[/tex]