contestada

Use △GHJ, where A, B, and C are midpoints of the sides. When AC = 3y−5 and HJ = 4y+2, what is HB?

Use GHJ where A B and C are midpoints of the sides When AC 3y5 and HJ 4y2 what is HB class=

Respuesta :

The answer for the question is
Ver imagen buddharajkhatri

Use △GHJ, where A, B, and C are midpoints of the sides

HB=14

Given :

Use △GHJ, where A, B, and C are midpoints of the sides

AC = 3y−5 and HJ = 4y+2

Apply mid point theorem

mid segment = half of base

[tex]AC=\frac{1}{2}(HJ)[/tex]

Now we replace AC and HJ

[tex]AC=\frac{1}{2}(HJ)\\3y-5=\frac{1}{2} (4y+2)\\3y-5=2y+1\\Subtract \; 2y\\1y-5=1\\Add \; 5\\1y=1+5\\y=6[/tex]

B is the midpoint . HB is half of HJ

[tex]HB=\frac{1}{2} HJ\\HB=\frac{1}{2}(4y+2)\\x=6\\HB=\frac{1}{2}(4(6)+2)\\\\HB=\frac{1}{2}(28)\\\\HB=14[/tex]

So the value of HB = 14

Learn more : brainly.com/question/23120373