Theorem
contestada


[tex] {2}^{2n} \times {2}^{n} \times \frac{2}{16} n[/tex]
solve it without any links. I don't want any links..​

Respuesta :

Answer:

[tex] \frac{n \times {2}^{3n} }{8} [/tex]

Step-by-step explanation:

1) Take out the constants.

[tex] \frac{2}{16} \times {2}^{2n} \times {2}^{n} n[/tex]

2)Simplify 2/16 to 1/8.

[tex] \frac{1}{8} \times {2}^{2n} \times {2}^{n} n[/tex]

3) Use Quotient rule: x^a/x^b = x^a-b.

[tex] \frac{ {2}^{2n + n} }{8} [/tex]

4) Simplify 2n + n to 3n.

[tex] \frac{ {2}^{3n} n}{8} [/tex]

Hence, the answer is 2^3n n/8