Respuesta :

Answer:

[tex]\frac{3}{x + 3} + \frac{2}{(x+3)^2}[/tex]

Step-by-step explanation:

Given

[tex]\frac{3x + 11}{x^2 +6x + 9}[/tex]

Required

Express as partial fraction

[tex]\frac{3x + 11}{x^2 +6x + 9}[/tex]

Expand the numerator

[tex]\frac{3x + 11}{x^2 +3x +3x+ 9}[/tex]

Factorize

[tex]\frac{3x + 11}{x(x +3) +3(x+ 3)}[/tex]

Factor out x + 3

[tex]\frac{3x + 11}{(x +3)(x+ 3)}[/tex]

[tex]\frac{3x + 11}{(x +3)^2}[/tex]

As a partial fraction, we have:

[tex]\frac{3x + 11}{(x +3)^2} = \frac{A}{x + 3} + \frac{B}{(x+3)^2}[/tex]

Take LCM

[tex]\frac{3x + 11}{(x +3)^2} = \frac{A(x+3) + B}{(x + 3)^2}[/tex]

Cancel out (x + 3)^2 on both sides

[tex]3x + 11 = A(x+3) + B[/tex]

Open bracket

[tex]3x + 11 = Ax+3A + B[/tex]

By comparison, we have:

[tex]Ax = 3x[/tex] ===> [tex]A = 3[/tex]

[tex]3A + B = 11[/tex]

Substitute 3 for A

[tex]3*3 + B = 11[/tex]

[tex]9 + B = 11[/tex]

Solve for B

[tex]B = 11-9[/tex]

[tex]B =2[/tex]

Substitute: [tex]A = 3[/tex] and [tex]B =2[/tex] in

[tex]\frac{3x + 11}{(x +3)^2} = \frac{A}{x + 3} + \frac{B}{(x+3)^2}[/tex]

[tex]\frac{3x + 11}{(x +3)^2} = \frac{3}{x + 3} + \frac{2}{(x+3)^2}[/tex]

Hence, the partial fraction is:

[tex]\frac{3}{x + 3} + \frac{2}{(x+3)^2}[/tex]