Respuesta :

Answer:

19 days

Step-by-step explanation:

Given

[tex]a = 150[/tex] --- initial

[tex]r = 8\%[/tex] -- rate

Required

Days when the fish gets to 30

The function is exponential and as such it follows;

[tex]y = ab^x[/tex]

Where x represents the number of days and y the number of fishes

Because the fishes decreases;

[tex]b = 1 - r[/tex]

So, we have:

[tex]b = 1 - 8\%[/tex]

Express as decimal

[tex]b = 1 - 0.08[/tex]

[tex]b = 0.92[/tex]

In [tex]y = ab^x[/tex]

[tex]a =150[/tex]

[tex]y = 30[/tex]

[tex]b = 0.92[/tex]

So, we have:

[tex]30 = 150 * 0.92^x[/tex]

Divide both sides by 150

[tex]0.2 = 0.92^x[/tex]

Take log of both sides

[tex]log(0.2) = log(0.92^x)[/tex]

Apply law of logarithm

[tex]log(0.2) = x\ log(0.92)[/tex]

Make x the subject

[tex]x = \frac{log(0.2)}{log(0.92)}[/tex]

[tex]x = \frac{-0.6990}{-0.0362}[/tex]

[tex]x = 19.309[/tex]

[tex]x \approx 19[/tex]

Hence, it takes approximately 19 days