Respuesta :
Answer:
Total number of marbles = 12
P (1 red & 1 orange) =
[tex] \frac{1 + 1}{12} \\ = \frac{2}{12} \\ = \frac{1}{6} \\ = 0.16[/tex]
Answer:solution given:
total no of marbles [S]=12
total no of red marbles[R]=5
total no of green marbles[G]=3
total no of yellow marbles[Y]=2
total no of orange marbles[O]=2
now
the P( red, then orange) n[p]=?
we have
n[p]=[tex] \frac{n[R]+n[O]}{n[S]} [/tex]
n[p]=[tex] \frac{5+2}{12} [/tex]
n[p]=[tex] \frac{7}{12} [/tex]
the P( red, then orange) n[p]=[tex] \frac{7}{12} [/tex]