Suppose that Mark deposits $4,000 per year into an account that has a 5.5% annual interest rate compounded continuously. Assume a continuous money flow, then it takes years for the account to be worth $200,000. (Round the answer to an integer at the last step.)

Respuesta :

Answer:

[tex]t=24yrs[/tex]

Step-by-step explanation:

From the question we are told that:

Principle [tex]P=\$4000[/tex]

Interest [tex]r=5.5\%[/tex]

Final Value [tex]X=\$200000[/tex]

Generally the equation Time is mathematically given by

 [tex]X=P *e^{r*t}\int^t_0 e^{r*t} dt[/tex]

 [tex]200000=4000 *e^{0.055*t}\int^t_0 e^{0.055*t} dt[/tex]

 [tex]200000=4000* \frac{e^{0.055*t}-1}{0.055}[/tex]

 [tex]e^{0.055*t}=\frac{15}{4}[/tex]

 [tex]e^{0.055*t}=3.75[/tex]

 [tex]0.055t=ln3.75[/tex]

 [tex]t=24.03[/tex]

Therefore the number of years it takes years for the account to be worth $200,000.

[tex]t=24yrs[/tex]