Respuesta :
Answer:
[tex]a_n = 432 \cdot \left(\frac{1}{6}\right)^n[/tex] OR [tex]a_n = 72 \cdot \left(\frac{1}{6}\right)^{n-1}[/tex]
Step-by-step explanation:
The first term is 72, and each term is equal to the previous term multiplied by 1/6. This yields the expression [tex]a_n = 72 \cdot \left(\frac{1}{6}\right)^{n-1}[/tex], which is equivalent to [tex]a_n = 432 \cdot \left(\frac{1}{6}\right)^n[/tex].
Answer:
[tex]n _{th} = n _{1} {r}^{n - 1} \\ n _{th} = 72 \times 12 {}^{(n - 1)} \\ n _{th} = 72 \times ( {12}^{n} .12^(-1)) \\ n _{th} = 6 × {12}^{n} [/tex]