Answer:
[tex]b)\ 0.568[/tex]
Step-by-step explanation:
Given
[tex]f(x) = 6x(1- x);\ 0 \le x \le 1[/tex]
Required
[tex]P(0.3 < x < 0.7)[/tex]
From the question, we have:
[tex]P(a < x < b) = \int\limits^b_a {f(x)} \, dx[/tex]
So, we have:
[tex]P(0.3 < x < 0.7) = \int\limits^{0.7}_{0.3} {6x(1 - x)} \, dx[/tex]
Open bracket
[tex]P(0.3 < x < 0.7) = \int\limits^{0.7}_{0.3} {6x - 6x^2} \, dx[/tex]
Integrate
[tex]P(0.3 < x < 0.7) = \frac{6x^2}{2} - \frac{6x^3}{3}}|\limits^{0.7}_{0.3}[/tex]
[tex]P(0.3 < x < 0.7) = 3x^2 - 2x^3|\limits^{0.7}_{0.3}[/tex]
Substitute 0.7 and 0.3 for x
[tex]P(0.3 < x < 0.7) = (3*0.7^2 - 2*0.7^3) - (3*0.3^2 - 2*0.3^3)[/tex]
Using a calculator, we have:
[tex]P(0.3 < x < 0.7) = (0.784) - (0.216)[/tex]
Remove brackets
[tex]P(0.3 < x < 0.7) = 0.784 - 0.216[/tex]
[tex]P(0.3 < x < 0.7) = 0.568[/tex]