The graph of which function has an amplitude of 3 and a right phase shift of ?
y = 3+ sin 2(x - 5)
y = 3sin 2(2
y = 3+ sin 2 (2+)
y = 3sin 2(x + 5)

The graph of which function has an amplitude of 3 and a right phase shift of y 3 sin 2x 5 y 3sin 22 y 3 sin 2 2 y 3sin 2x 5 class=

Respuesta :

Answer:

Option 4

Step-by-step explanation:

Equation representing the sine function is,

y = Asin[B(x- C)] + D

Here, A = Amplitude

B = [tex]\frac{2\pi }{\text{Period}}[/tex]

C = Phase shift

D = Vertical shift

If the amplitude of the the given function = 3 and right phase shift = [tex]\frac{\pi }{4}[/tex]

Therefore, equation of the sine function will be,

[tex]y=3\text{sin}B(x-\frac{\pi }{4})+D[/tex]

By comparing this equation with the given options,

Equation representing right phase shift = [tex]\frac{\pi }{4}[/tex] and amplitude = 3,

[tex]y=3\text{sin}2(x-\frac{\pi}{4})[/tex]

This equation represents right phase shift = [tex]\frac{\pi }{4}[/tex] and amplitude = 3.

Therefore, Option 4 is the correct option.