Respuesta :

Answer:

[tex] y=0.46591x+7.71591[/tex]

Step-by-step explanation:

Labelled points are [tex] (21,\: 17.5)=(x_1,\:y_1) \: \&\:(43,\: 27.75)=(x_2,\:y_2) [/tex]

Slope of line (m) [tex] =\frac{27.75-17.5}{43-21} =\frac{10.25}{22} =\frac{41}{88} [/tex]

Equation of line in point - slope form is given as:

[tex] y-y_1 = m(x-x_1) [/tex]

[tex] \therefore y-17.5= \frac{41}{88} (x-21) [/tex]

[tex] \therefore y= \frac{41}{88} x-\frac{861}{88}+17.5[/tex]

[tex] \therefore y= \frac{41}{88} x+17.5-\frac{861}{88}[/tex]

[tex] \therefore y= \frac{41}{88} x+\frac{1,540-861}{88}[/tex]

[tex] \therefore y= \frac{41}{88} x+\frac{679}{88}[/tex]

[tex] \therefore y=0.465909091x+7.71590909[/tex]

[tex] \therefore y=0.46591x+7.71591[/tex]