[tex] \huge \mathcal{ Answer࿐}[/tex]
Question 1.) Find Probability :
A. A red card or a spade .
Total red cards = total hearts + total diamonds
- [tex] \longmapsto \: 13 + 13[/tex]
- [tex] \longmapsto \: 26[/tex]
Total spades = 13 cards
- Favourable outcomes = 26 + 13 = 39
now, probability of getting either A red card or a spade is :
[tex] \mathrm{ \dfrac{favorable \: outcomes}{total \: outcomes} }[/tex]
- [tex] \dfrac{39}{52} [/tex]
- [tex] \dfrac{3}{4} [/tex]
B. A face card or an ace
- total face cards = 4 × 3 = 12
favorable outcomes = 12 + 4 = 16
The probability of getting a face card or an ace :
[tex]\mathrm{ \dfrac{favorable \: outcomes}{total \: outcomes} }[/tex]
- [tex] \dfrac{16}{52} [/tex]
- [tex] \dfrac{4}{13} [/tex]
C. A diamond and a 9
We know there's only one diamond which is 9
So, favourable outcome = 1
Now, probability of getting a diamond and a 9 :
[tex]\mathrm{ \dfrac{favorable \: outcomes}{total \: outcomes} }[/tex]
- [tex] \dfrac{1}{52}[/tex]
_____________________________
2.) Two pair of dice is rolled. Determine the probability :
The outcomes are :
[tex](1 , 1) (1 , 2) (1 , 3) (1 , 4) (1 , 5) (1 ,6)[/tex]
[tex](2 , 1) (2 , 2) (2 , 3) (2 , 4) (2 , 5) (2 , 6)[/tex]
[tex](3 , 1) (3 , 2) (3 , 3) (3 , 4) (3 , 5) (3 , 6) [/tex]
[tex](4 , 1) (4 , 2) (4 , 3) (4 , 4) (4 , 5) (4 , 6) [/tex]
[tex](5 , 1) (5 , 2) (5 , 3) (5 , 4) (5 , 5) (5 , 6) [/tex]
[tex](6 , 1) (6 , 2) (6 , 3) (6 , 4) (6 , 5) (6 , 6)[/tex]
Total number of outcomes = 6² = 36 outcomes
Find :
A. P (sum is 4 or 11 )
Total number of outcomes having sum of 4 is :
Total number of outcomes having sum of 11 is :
So, favorable outcome = 2 + 3 = 5
Probablity ( sum is 4 or 11 ) :
[tex]\mathrm{ \dfrac{favorable \: outcomes}{total \: outcomes} }[/tex]
- [tex] \dfrac{5}{36} [/tex]
B. P(sum is less than 5 or sum is greater than 8)
Total number of outcomes having sum less than 5 is :
Total number of outcomes having sum greater than 8 is :
So, favorable outcomes = 10 + 6 = 16
Probablity of (sum is less than 5 or sum is greater than 8) is :
[tex]\mathrm{ \dfrac{favorable \: outcomes}{total \: outcomes} }[/tex]
- [tex] \dfrac{16}{36} [/tex]
- [tex] \dfrac{4}{9} [/tex]
_____________________________
[tex]\mathrm{ \#TeeNForeveR}[/tex]