Answer:
298.24 mph at an angle of 89 degrees
Step-by-step explanation:
[tex]v_p[/tex] = Velocity of plane = 300 mph at 50 degrees
[tex]v_j[/tex] = Velocity of jet stream = 200 mph at 160 degrees
The velocity of the plane in component form is
[tex]v_p=300\cos50^{\circ}\hat{i}+300\sin50^{\circ}\hat{j}[/tex]
The velocity of the jet stream in component form is
[tex]v_j=200\cos160^{\circ}\hat{i}+200\sin160^{\circ}\hat{j}[/tex]
Resultant velocity is given by
[tex]v=(300\cos50^{\circ}+200\cos160^{\circ})\hat{i}+(300\sin50^{\circ}+200\sin160^{\circ})\hat{j}\\\Rightarrow v=4.9\hat{i}+298.2\hat{j}[/tex]
Magnitude is given by
[tex]|v|=\sqrt{4.9^2+298.2^2}\\\Rightarrow |v|=298.24\ \text{mph}[/tex]
Angle is given by
[tex]\theta=\tan^{-1}\dfrac{298.2}{4.9}=89^{\circ}[/tex]
The velocity of the plane is 298.24 mph at an angle of 89 degrees.