Given s(t)= -t^3+2t^2+(3/2) be the position of a particle moving along the x-axis at time t. At what time will the instantaneous velocity equal the average velocity over the time interval (0,4)?

Respuesta :

Answer: [tex]\dfrac{16}{9}\ s[/tex]

Step-by-step explanation:

Given

[tex]s(t)=-t^3+2t^2+\frac{3}{2}[/tex]

Average velocity is given by

[tex]v_{avg}=\dfrac{\int vdt}{\int dt}[/tex]

[tex]v_{avg}=\dfrac{-\frac{t^4}{4}+\frac{2}{3}t^3+1.5t}{t}\\\\v_{avg}=-\frac{t^3}{4}+\frac{2}{3}t^2+1.5[/tex]

Now, equate the average and instantaneous velocity

[tex]-\frac{t^3}{4}+\frac{2}{3}t^2+1.5=-t^3+2t^2+1.5\\\\\Rightarrow -\dfrac{3t^3}{4}+\dfrac{4t^2}{3}=0\\\\\Rightarrow t^2\left(-\dfrac{3}{4}t+\dfrac{4}{3}\right)=0\\\\\Rightarrow t=\dfrac{16}{9}\ s[/tex]