Step-by-step explanation:
Given that,
The height of the cylinder, h = 3x-4
The radius of the cylinder, r = 3x+2
The volume of the cylinder is :
[tex]V=\pi r^2 h[/tex]
The surface area of the cylinder is :
[tex]A=2\pi r(r+h)[/tex]
The ratio of the volume of the cylinder to the surface area of the cylinder is :
[tex]\dfrac{V}{A}=\dfrac{\pi r^2h}{2\pi r(r+h)}\\\\\dfrac{V}{A}=\dfrac{rh}{2(r+h)}[/tex]
Put all the values,
[tex]\dfrac{V}{A}=\dfrac{(3x+2)(3x-4)}{2(3x+2+3x-4)}\\\\\dfrac{V}{A}=\dfrac{(3x+2)(3x-4)}{2(6x-2)}[/tex]
Hence, this is the required solution.