Answer:
[tex]d=6.34g/cm^3[/tex]
Explanation:
Hello there!
In this case, since the calculation of density is performed by dividing the mass over volume:
[tex]d=\frac{m}{V}[/tex]
Which gives us a better understanding of the degree of compactness of the object; we can find the required density in grams per cubic centimeter by applying the following dimensional analysis in the aforementioned equation:
[tex]d=\frac{0.0124kg}{1893mm^3} *(\frac{10mm}{1cm} )^3*\frac{1000g}{1kg}\\\\d=6.34g/cm^3[/tex]
Regards!