Select the Pair(s) of ratios that form a proportion.

Answer:
Option 3
Step-by-step explanation:
If two ratios [tex]\frac{a}{b}[/tex] and [tex]\frac{c}{d}[/tex] are proportional,
[tex]\frac{a}{b}=\frac{c}{d}[/tex]
By applying this property for the given options,
Option 1
If the given ratios [tex]\frac{24}{31}[/tex] and [tex]\frac{20}{27}[/tex] are proportional.
[tex]\frac{24}{31}=\frac{20}{27}[/tex]
Which is false.
Therefore, ratios are not proportional.
Option 2
If the given ratios [tex]\frac{8}{9}[/tex] and [tex]\frac{24}{26}[/tex] are proportional,
[tex]\frac{8}{9}= \frac{24}{36}[/tex]
[tex]\frac{8}{9}= \frac{6}{9}[/tex]
False.
Therefore, given ratios are not proportional.
Option 3
If the given ratios [tex]\frac{16}{5}[/tex] and [tex]\frac{64}{20}[/tex] are proportional,
[tex]\frac{16}{5}=\frac{64}{20}[/tex]
[tex]\frac{16}{5}=\frac{16}{5}[/tex]
True.
Therefore, the given ratios are proportional.
Option 4
If the given ratios [tex]\frac{6}{4}[/tex] and [tex]\frac{15}{10}[/tex] are proportional,
[tex]\frac{6}{4}=\frac{15}{10}[/tex]
[tex]\frac{3}{2}= \frac{3}{2}[/tex]
True.
Therefore, given ratios are proportional.
Option 3 is the answer.