Respuesta :

Answer:

Inverse would be:

[tex]y = (\frac{1}{5}x + 3)^3 - 2[/tex]

Hope this helps!

Answer:

[tex]\implies y =\dfrac{(x-3)^3+3}{5}[/tex]

Step-by-step explanation:

Given :-

  • [tex]\sqrt[3]{5x-3}+2[/tex]

And we need to find out the inverse of the function. So for that replace x and y. We have ,

[tex]\implies \sqrt[3]{5x-3}+2[/tex]

On interchanging x and y :-

[tex]\\\\\implies x = \sqrt[3]{5y-3}+2[/tex]

Solve out for y :-

[tex]\implies x -2 =\sqrt[3]{5y-3}\\\\\implies (x-3)^3=5y-3 \\\\\implies 5y = (x-3)^3+3\\\\\implies y =\dfrac{(x-3)^3+3}{5}[/tex]

Hence the inverse of the function is (x-3)³+3/5.