Given:
An exponential function goes through points (0,12) and (3,6144).
To find:
The exponential function.
Solution:
The general exponential function is:
[tex]y=ab^x[/tex] ...(i)
The function goes through point (0,12). Substituting [tex]x=0,y=12[/tex], we get
[tex]12=ab^0[/tex]
[tex]12=a[/tex]
The function goes through point (3,6144). Substituting [tex]a=12, x=3,y=6144[/tex] in the general exponential function, we get
[tex]6144=12b^3[/tex]
[tex]\dfrac{6144}{12}=b^3[/tex]
[tex]512=b^3[/tex]
[tex]512^{\frac{1}{3}}=b[/tex]
[tex]8=b[/tex]
Putting [tex]a=12,b=8[/tex] in (i), we get
[tex]y=12(8)^x[/tex]
Therefore, the required exponential function is [tex]y=12(8)^x[/tex].