Answer:
The mass of the block m is:
[tex]m=M(sin(\theta)+\mu_{s}cos(\theta))[/tex]
Explanation:
Let's analyze the block by parts
For the block M
[tex]T-W_{x}-f_{f}=0[/tex] (1)
Where:
- T is the tension
- W(x) is the component of the weight in the x-direction
- F(f) is the friction force
[tex]T-Mgsin(\theta)-\mu_{s}N=0[/tex]
[tex]T-Mgsin(\theta)-\mu_{s}Mgcos(\theta)=0[/tex]
For the block m
[tex]T-W=0[/tex]
[tex]T=mg[/tex] (2)
Now, let's combines equation (1) and (2):
[tex]mg-Mgsin(\theta)-\mu_{s}Mgcos(\theta)=0[/tex]
Finally, let's solve it for block m.
[tex]mg-Mg(sin(\theta)+\mu_{s}cos(\theta))=0[/tex]
[tex]m=M(sin(\theta)+\mu_{s}cos(\theta))[/tex]
I hope it helps you!