Respuesta :

Given:

The diagram of a circle.

[tex]m\angle BPV=124^\circ ,m\angle VPE=30^\circ ,m\angle EPF=76^\circ, m\angle FPD=48^\circ[/tex].

To find:

The measure of arc BEF.

Solution:

The measure of central angle is equal to the measure of corresponding arc.

So, in the given figure,

[tex]n(arcBV)=124^\circ ,m(arcVE)=30^\circ ,m(arcEF)=76^\circ, m(arcFD)=48^\circ[/tex]

Now,

[tex]m(arcBEF)=m(arcBV)+m(arcVE)+m(arcEF)[/tex]

[tex]m(arcBEF)=124^\circ +30^\circ+76^\circ[/tex]

[tex]m(arcBEF)=230^\circ[/tex]

Therefore, the measure of arc BEF is 230 degrees.