Respuesta :

Given:

The complex number is:

[tex]z=1+i\sqrt{3}[/tex]

To find:

The argument of the given complex number.

Solution:

If a complex number is [tex]z=x+iy[/tex], then the argument of the complex number is:

[tex]\theta=\tan^{-1}\dfrac{y}{x}[/tex]

We have,

[tex]z=1+i\sqrt{3}[/tex]

Here, [tex]x=1[/tex] and [tex]y=\sqrt{3}[/tex]. So, the argument of the given complex number is:

[tex]\theta =\tan^{-1}\dfrac{\sqrt{3}}{1}[/tex]

[tex]\theta =\tan^{-1}\sqrt{3}[/tex]

[tex]\theta =\tan^{-1}\left(\tan \dfrac{\pi}{3}\right)[/tex]

[tex]\theta =\dfrac{\pi}{3}[/tex]

Therefore, the argument of the given complex number is [tex]\theta =\dfrac{\pi}{3}[/tex].