Given:
The complex number is:
[tex]z=1+i\sqrt{3}[/tex]
To find:
The argument of the given complex number.
Solution:
If a complex number is [tex]z=x+iy[/tex], then the argument of the complex number is:
[tex]\theta=\tan^{-1}\dfrac{y}{x}[/tex]
We have,
[tex]z=1+i\sqrt{3}[/tex]
Here, [tex]x=1[/tex] and [tex]y=\sqrt{3}[/tex]. So, the argument of the given complex number is:
[tex]\theta =\tan^{-1}\dfrac{\sqrt{3}}{1}[/tex]
[tex]\theta =\tan^{-1}\sqrt{3}[/tex]
[tex]\theta =\tan^{-1}\left(\tan \dfrac{\pi}{3}\right)[/tex]
[tex]\theta =\dfrac{\pi}{3}[/tex]
Therefore, the argument of the given complex number is [tex]\theta =\dfrac{\pi}{3}[/tex].