Respuesta :

Given:

[tex]C(8,r)=28[/tex]

To find:

The value of r.

Solution:

Combination formula:

[tex]C(n,r)=\dfrac{n!}{r!(n-r)!}[/tex]

We have,

[tex]C(8,r)=28[/tex]

Using the combination formula, we get

[tex]\dfrac{8!}{r!(8-r)!}=28[/tex]

[tex]\dfrac{8!}{28}=r!(8-r)![/tex]

[tex]\dfrac{8\times 7\times 6!}{28}=r!(8-r)![/tex]

[tex]2\times 6!=r!(8-r)![/tex]

It can be written as:

[tex]2!6!=r!(8-r)![/tex]                [tex][\because 2!=2\times 1=2][/tex]

Case 1:

[tex]2!=r![/tex]

[tex]r=2[/tex]

And,

[tex]6!=(8-r)![/tex]

[tex]6=8-r[/tex]

[tex]r=8-6[/tex]

[tex]r=2[/tex]

Case 2:

[tex]6!=r![/tex]

[tex]r=6[/tex]

And,

[tex]2!=(8-r)![/tex]

[tex]2=8-r[/tex]

[tex]r=8-2[/tex]

[tex]r=6[/tex]

Therefore, the value of r is either 2 or 6.