Coherent light with wavelength 591 nm passes through two very narrow slits, and the interference pattern is observed on a screen a distance of 3.00 m from the slits. The first-order bright fringe is a distance of 4.84 mm from the center of the central bright fringe. For what wavelength of light will the first-order dark fringe be observed at this same point on the screen?

Respuesta :

Answer:

The wavelength will be "1.182 μm".

Explanation:

The given values are:

Wavelength

[tex]\lambda=591 \ nm[/tex]

or,

  [tex]=591\times 10^-9 \ m[/tex]

Distance,

[tex]d = 3.00 m[/tex]

[tex]n = 1[/tex]

Distance of fringe from center,

[tex]y = 4.84 \ mm[/tex]

We have to find the wavelength of first order dark fringe,

[tex]\lambda = ?[/tex]

As we know,

⇒ [tex]y_{bright} =\frac{1\times \lambda\times L}{d}[/tex]

On putting the given values in the formula, we get

   [tex]0.00484=\frac{1\times (591\times 10^{-9})\times 3}{d}[/tex]          

On applying the cross multiplication, we get

   [tex]\lambda = \frac{0.00484\times 000036632}{0.5\times 3}[/tex]

      [tex]=1182\times 10^{-9}[/tex]

or,

      [tex]=1.182 \ \mu m[/tex]