Answer:
d. none of these
Explanation:
From the given information:
Let assume that Percival catches Sir Rodney's horse in time "t" after covering a certain distance "s"
Then, using the second equation of motion:
[tex]S = ut + \dfrac{1}{2}at^2[/tex]
FOR Percival, we have:
[tex]S = (0\times t ) + \dfrac{1}{2} \times 0.6 \ m/s \times t^2 \\ \\ S = 0.3 \ m/s \times t^2 -- -- (1)[/tex]
FOR Sir Rodney;
[tex]S = ut + \dfrac{1}{2}at^2[/tex]
[tex]S = (3\times t ) + \dfrac{1}{2} \times 0 \times t^2 \\ \\ S =3t--- (2)[/tex]
Equating both equations together; we have:
0.3t² = 3t
0.3t² - 3t = 0
0.3t(t - 10) = 0
If Percival's position at rest = 0
Then; t = 10 s.