Answer:
Following are the solution to the given points:
Explanation:
Any agent has a $100 deposit to an institution of assets X to make a demand deposit of $100.
For point a:
[tex]X \approx U(100,200)\\\\E(X) = \frac{(100+200)}{2} = 150\\\\[/tex]
assume Y is the Loss of depositor
[tex]Y = X - 100\\\\E(Y) = 150 - 100\\\\[/tex]
The expected loss of depositors [tex]E(Y) = \$50[/tex]
For point b:
[tex]X \approx U(60,200)\\\\E(X) = \frac{(60+200)}{2} = 130\\\\Y = X - 100\\\\E(Y) = 130 - 100\\[/tex]
The expected loss of depositors [tex]E(Y) = \$30[/tex]
For point C:
[tex]X \approx U(0,200)\\\\E(X) = \frac{(0+200)}{2} = 100\\\\Y = X - 100\\\\E(Y) = 100 - 100[/tex]
The expected loss of depositors[tex]E(Y) = \$0[/tex]
For point D:
[tex]X \approx U(0,200)\\\\E(X) = \frac{(0+200)}{2} = 100\\[/tex]
Here the government introduce deposits insurance, deposit insurance amount (I) is 84
[tex]Y \ becomes\ X+84 - 100\\\\E(Y) = E(X) + 84 -100\\\\E(Y) = 100 + 84 -100= $84[/tex]