Respuesta :

Answer:

[tex]\angle U = 20^\circ[/tex]

Step-by-step explanation:

Given

See attachment

[tex]\angle S = 23[/tex]

arc [tex]RS = 86[/tex]

Required

Find [tex]\angle U[/tex]

Let

[tex]O \to[/tex] center of the circle

We have that:

arc [tex]RS = 86[/tex]

This implies that:

[tex]\angle SOR = 86^\circ[/tex]

and

[tex]\triangle SOR \to[/tex] is an isosceles triangle

because:

[tex]SO = OR \to[/tex] the radius of the circle

And

[tex]\angle RSO = \angle ORS[/tex]

So, we have:

[tex]\angle RSO + \angle ORS + \angle SOR = 180^\circ[/tex] --- angles in a triangle

[tex]\angle RSO + \angle ORS + 86^\circ = 180^\circ[/tex]

Collect like terms

[tex]\angle RSO + \angle ORS =- 86^\circ + 180^\circ[/tex]

[tex]\angle RSO + \angle ORS =94^\circ[/tex]

Recall that: [tex]\angle RSO = \angle ORS[/tex]

So:

[tex]\angle RSO + \angle RSO =94^\circ[/tex]

[tex]2\angle RSO =94^\circ[/tex]

Divide by 2

[tex]\angle RSO =47^\circ[/tex]

RU is a tangent.

So:

[tex]\angle ORU = 90^\circ[/tex]

Given that:

[tex]\angle S = 23[/tex]

Considering [tex]\triangle SRU[/tex]

We have:

[tex]\angle RSU = \angle S = 23^\circ[/tex]

So:

[tex]\angle SRU= \angle RSO + \angle ORU[/tex]

[tex]\angle SRU= 47 + 90[/tex]

[tex]\angle SRU= 137[/tex]

Lastly:

[tex]\angle RUS + \angle RSU + \angle SRU =180^{0}[/tex]

[tex]\angle RUS + 23 + 137=180^{0}[/tex]

Collect like terms

[tex]\angle RUS =180^{0} - 23 - 137[/tex]

[tex]\angle RUS =20^{0}[/tex]

Hence:

[tex]\angle U = 20^\circ[/tex]

Ver imagen MrRoyal