Answer:
The right equation will be "[tex]x^2+15x-54 =0[/tex]".
Step-by-step explanation:
According to the question,
Border around the photograph on the top is:
= 3 cm
The remaining sides,
= 4 cm
Area,
= 10 square cm
Let the length of sides be "x".
Since,
The paper's dimensions will be:
⇒ [tex](x+3+4)[/tex]
[tex](x+7)[/tex]
and
⇒ [tex](x+4+4)[/tex]
[tex](x+8)[/tex]
now,
⇒ [tex](x+7)(x+8)=110[/tex]
⇒ [tex]x^2+7x+8x+56=110[/tex]
⇒ [tex]x^2+15+56=110[/tex]
On subtracting "56" from both sides, we get
⇒ [tex]x^2+15x-56=110-56[/tex]
⇒ [tex]x^2+15x=54[/tex]
Or,
⇒ [tex]x^2+15x-54=0[/tex]