what is the measure of angle B in degrees?

Answer:
119°
Step-by-step explanation:
51+180-112= 119°
------
We know that,
[tex]\sf\purple{Sum\:of\:angles\:on\:a\:straight\:line}[/tex] = 180°
➡ ∠ C + 112° = 180°
➡ ∠ C = 180° - 112°
➡ ∠ C = 68°
Also,
[tex]\sf\pink{Sum\:of\:angles\:of\:a\:triangle}[/tex] = 180°
⇝ ∠ A + 51° + 68° = 180°
⇝ ∠ A + 119° = 180°
⇝ ∠ A = 180° - 119°
⇝ ∠ A = 61°
Again,
[tex]\sf\blue{Sum\:of\:angles\:on\:a\:straight\:line}[/tex] = 180°
✒ ∠ A + ∠ B = 180°
✒ 61° + ∠ B = 180°
✒ ∠ B = 180° - 61°
✒ ∠ B = 119°
Hence, the measure of angle B is 119°.
[tex]\circ \: \: { \underline{ \boxed{ \sf{ \color{green}{Happy\:learning.}}}}}∘[/tex]