Respuesta :

Answer:

Consistent and dependent

Step-by-step explanation:

Given

[tex]3y = 9x - 6[/tex]

[tex]2y + 6x = 4[/tex]

Required

The words that describe the equations

Make y the subject in (2)

[tex]2y + 6x = 4[/tex]

Collect like terms

[tex]2y = 4 - 6x[/tex]

Divide through by 2

[tex]y = 2 - 3x[/tex]

Substitute: [tex]y = 2 - 3x[/tex] in (1)

[tex]3y = 9x - 6[/tex]

[tex]3(2 - 3x) = 9x - 6[/tex]

[tex]6 - 9x = 9x - 6[/tex]

Collect like terms

[tex]9x+9x = 6+6[/tex]

[tex]18x = 12[/tex]

Solve for x

[tex]x = \frac{12}{18}[/tex]

Simplify

[tex]x = \frac{2}{3}[/tex]

Substitute [tex]x = \frac{2}{3}[/tex] in [tex]y = 2 - 3x[/tex]

[tex]y = 2 - 3*\frac{2}{3}[/tex]

[tex]y = 2 - 2[/tex]

[tex]y =0[/tex]

So, we have:

[tex]x = \frac{2}{3}[/tex] and [tex]y =0[/tex]

The system is consistent because it has at least 1 solution

The system is dependent because it has more than 1 solution