contestada

Name:
Unit 11: Volume & Surface Area
Date:
Bell:
Homework 3: Area of Composite Figures
** This is a 2-page document! **
Directions: Find the area of each figure. Round to the nearest hundredth where necessary.
1.
15 cm
24 cm
23 cm
29 cm
24
2.
3.
106
55 mm
RS


Name Unit 11 Volume amp Surface Area Date Bell Homework 3 Area of Composite Figures This is a 2page document Directions Find the area of each figure Round to th class=

Respuesta :

The shaded region and the regions left blank in the given figures form

composite figures.

Correct responses:

6. 426.9 km²

7. 183 in.²

8. 192.42 m²

9. 239.4 ft.²

10. 89.22 cm²

Methods of calculation

Solution:

6. The area of a triangle = [tex]\mathbf{\frac{1}{2}}[/tex] × Base length × Height

Therefore;

Area of the triangle, A = [tex]\frac{1}{2}[/tex] × 40 km × 27 km = 540 km²

Area of a circle, A = [tex]\mathbf{\pi \cdot \frac{D^2}{4}}[/tex]

Where;

D = The diameter of the circle.

Area of the circle having a diameter of D = 12 km is; A = [tex]\pi \times \frac{12^2}{4}[/tex] ≈ 113.1 km²

Area of the shaded region, A = 540 km² - 113.1 km² = 426.9 km²

7. Taking the the shades region as two similar quadrilaterals, we have;

Length of side, x = √(13² + 9²) in. = 5·√(10) in.

Length of side, y = √(250 - 15²) = 5

[tex]Area \ of \ a \ trapezoid, \ A = \mathbf{ \dfrac{a + b}{2} \times h}[/tex]

[tex]Area \ of \ the \ trapezoid = \dfrac{5 + 14 + 26}{2} \times 15 = \mathbf{ 337.5}[/tex]

Sum of area of the two triangles left blank is therefore;

A = [tex]\frac{1}{2}[/tex] × 15 in. × 5 in. + [tex]\frac{1}{2}[/tex] × 26 in. × 9 in. = 154.5 in.²

Therefore;

  • Area of the shade region, A = 337.5 in.² - 154.5 in.² = 183 in.²

8. Area of large circle = π × [tex]\frac{21^2}{4}[/tex] = 110.25·π

Area of the smaller circle left blank = π × [tex]\frac{\left(21 - 2 \times 3.5 \right)^2}{4}[/tex] = 49·π

Area of the shaded region = Area of the large circle - Area of the smaller circle left blank

Therefore;

  • A = 110.25·π m² - 49·π m² ≈ 192.42 m²

9. Altitude of the cut out triangle = [tex]\sqrt{23.8^2 - 21^2}[/tex] = 11.2

Area of the triangle = [tex]\frac{1}{2}[/tex] × 21 ft. × 11.2 ft. = 117.6 ft.²

Area of a parallelogram = Base × Height

Therefore;

Area of the parallelogram = 23.8 ft. × 15 ft. = 357 ft.²

Area of the shaded region, A = 357 ft.² - 117.6 ft.² = 239.4 ft.²

10. Assumption; Type of quadrilateral = A square

Area of the square = 8 cm × 8 cm = 64 cm²

Diagonal of the square = √((8 cm)² + (8 cm)²) = 8·√2 cm

Diameter of the circle = The diagonal of the square

Area of the circle = π × [tex]\frac{\left(8 \cdot \sqrt{2} \ cm \right)^2 }{4}[/tex] = 32·π cm²

Area of the shaded region = 32·π cm² - 8·√2 cm² ≈ 89.22 cm²

Learn more about the area of composite figures here:

https://brainly.com/question/2960589

Ver imagen oeerivona