Respuesta :

Answer:

[tex]\frac{5i}{3 - 4i} = \frac{3i - 4}{5}[/tex]

Step-by-step explanation:

Given

[tex]\frac{5i}{3 - 4i}[/tex]

Required

Solve

We have:

[tex]\frac{5i}{3 - 4i}[/tex]

Rationalize

[tex]\frac{5i}{3 - 4i} = \frac{5i}{3 - 4i} * \frac{3 + 4i}{3 + 4i}[/tex]

[tex]\frac{5i}{3 - 4i} = \frac{5i(3 + 4i)}{(3 - 4i)(3 + 4i)}[/tex]

Apply difference of two squares on the denominator

[tex]\frac{5i}{3 - 4i} = \frac{5i(3 + 4i)}{3^2 - (4i)^2}[/tex]

[tex]\frac{5i}{3 - 4i} = \frac{5i(3 + 4i)}{9 - (16*-1)}[/tex]

[tex]\frac{5i}{3 - 4i} = \frac{5i(3 + 4i)}{9 +16}[/tex]

[tex]\frac{5i}{3 - 4i} = \frac{5i(3 + 4i)}{25}[/tex]

Divide common factor (5)

[tex]\frac{5i}{3 - 4i} = \frac{i(3 + 4i)}{5}[/tex]

Expand the numerator

[tex]\frac{5i}{3 - 4i} = \frac{3i + 4*-1}{5}[/tex]

[tex]\frac{5i}{3 - 4i} = \frac{3i - 4}{5}[/tex]