Respuesta :

Answer:

The altitude is 4.1

The area of triangle DEF is 32.8

Step-by-step explanation:

An altitude drawn from angle F to the opposite side of the triangle will intercept length DE.

let the altitude = h

Apply trig-ratio to determine the value of the altitude "h";

[tex]sin (55) = \frac{h}{FE} \\\\sin (55) = \frac{h}{5} \\\\h = 5 \times sin(55)\\\\h = 5(0.8192)\\\\h = 4.096[/tex]

The area of ΔDEF using the value of the altitude is calculated as;

[tex]A = \frac{1}{2} \times base \times height\\\\A = \frac{1}{2} \times 16 \times 4.096\\\\A = 32.768 \ sq.unit\\\\A \approx 32.8 \ sq.unit[/tex]