Respuesta :
Answer:
a + b = 2
Step-by-step explanation:
Given
ax² + bx + c = 0 ( equation in standard form )
Then the sum of the roots = - [tex]\frac{b}{a}[/tex]
3x² - 6x + 2 = 0 ← is in standard form
with a = 3, b = - 6 , then
sum of roots = - [tex]\frac{-6}{3}[/tex] = 2
Answer:
[tex]I \ think \ it \ is \ 6x\\\\3x^2 - 6x +2 = 0\\\\[/tex]
[tex]x = \frac{-b \pm \sqrt{b^2 - 4*a*c} }{2a} \\\\a = 3, b = -6, c = 2\\\\x = \frac{-b + \sqrt{b^2 - 4*a*c} }{2a}, x = \frac{-b - \sqrt{b^2 - 4*a*c} }{2a} \\\\ \\\\x = \frac{6 + \sqrt{36 - 24} }{6} , x = \frac{6-\sqrt{36 -24} }{6} \\\\[/tex]
[tex]x = \frac{6+\sqrt{12} }{6} , x = \frac{6-\sqrt{12} }{6} \\\\x = \frac{3+\sqrt{3} }{3} , x = \frac{3-\sqrt{3} }{3}[/tex]
[tex]Let \ a = \frac{3 + \sqrt{3} }{3} , b = \frac{3-\sqrt{3} }{3} \\\\a + b = \frac{3+\sqrt{3} }{3} + \frac{3-\sqrt{3} }{3} = \frac{3+\sqrt{3} +3-\sqrt{3} }{3} = \frac{6}{3} = 2[/tex]