Calculate the energy, wavelength, and frequency of the emitted photon when an electron moves from an energy level of -3.40 eV to -13.60 eV.

Respuesta :

Answer:

(a) The energy of the photon is 1.632 x [tex]10^{-8}[/tex] J.

(b) The wavelength of the photon is 1.2 x [tex]10^{-17}[/tex] m.

(c) The frequency of the photon is 2.47 x [tex]10^{25}[/tex] Hz.

Explanation:

Let;

[tex]E_{1}[/tex] = -13.60 ev

[tex]E_{2}[/tex] = -3.40 ev

(a) Energy of the emitted photon can be determined as;

[tex]E_{2}[/tex] - [tex]E_{1}[/tex] = -3.40 - (-13.60)

           = -3.40 + 13.60

           = 10.20 eV

           = 10.20(1.6 x [tex]10^{-9}[/tex])

[tex]E_{2}[/tex] - [tex]E_{1}[/tex] = 1.632 x [tex]10^{-8}[/tex] Joules

The energy of the emitted photon is 10.20 eV (or 1.632 x [tex]10^{-8}[/tex] Joules).

(b) The wavelength, λ, can be determined as;

E = (hc)/ λ

where: E is the energy of the photon, h is the Planck's constant (6.6 x [tex]10^{-34}[/tex] Js), c is the speed of light (3 x [tex]10^{8}[/tex] m/s) and λ is the wavelength.

10.20(1.6 x [tex]10^{-9}[/tex]) = (6.6 x [tex]10^{-34}[/tex] * 3 x [tex]10^{8}[/tex])/ λ

λ = [tex]\frac{1.98*10^{-25} }{1.632*10^{-8} }[/tex]

  = 1.213 x [tex]10^{-17}[/tex]

Wavelength of the photon is 1.2 x [tex]10^{-17}[/tex] m.

(c) The frequency can be determined by;

E = hf

where f is the frequency of the photon.

1.632 x [tex]10^{-8}[/tex]  = 6.6 x [tex]10^{-34}[/tex] x f

f = [tex]\frac{1.632*10^{-8} }{6.6*10^{-34} }[/tex]

 = 2.47 x [tex]10^{25}[/tex] Hz

Frequency of the emitted photon is 2.47 x [tex]10^{25}[/tex] Hz.