A cone has twice the base diameter and three-fourths the height of a cylinder. Can you tell what the relationship between the volume of the cone and the volume of the cylinder is? Explain your reasoning.

Respuesta :

Answer:

Equal volumes

Step-by-step explanation:

Given

[tex]h \to[/tex] height of cone

[tex]d \to[/tex] diameter of cone

[tex]H \to[/tex] height of cylinder

[tex]D \to[/tex] diameter of cylinder

Such that:

[tex]d = 2D[/tex]

[tex]h =\frac{3}{4}H[/tex]

Required

The relationship between the volumes

The volume of a cylinder is:

[tex]V_1 = \pi R^2H[/tex]

Where

[tex]R = 0.5D[/tex]

So:

[tex]V_1 = \pi (0.5D)^2H[/tex]

[tex]V_1 = \pi *0.25*D^2H[/tex]

[tex]V_1 = 0.25\pi D^2H[/tex]

The volume of the cone is:

[tex]V_2 = \frac{1}{3}\pi r^2h[/tex]

Where

[tex]r =0.5d[/tex]

[tex]r = 0.5 * 2D[/tex]

[tex]r = D[/tex]

and

[tex]h =\frac{3}{4}H[/tex]

So, we have:

[tex]V_2 = \frac{1}{3}\pi * D^2 * \frac{3}{4}H[/tex]

[tex]V_2 = \frac{1}{4}\pi * D^2H[/tex]

[tex]V_2 = 0.25\pi * D^2H[/tex]

[tex]V_2 = 0.25\pi D^2H[/tex]

So, we have:

[tex]V_1 = 0.25\pi D^2H[/tex]

[tex]V_2 = 0.25\pi * D^2H[/tex]

[tex]V_1 = V_2[/tex]