WILL GIVE BRAINLIEST.

Use the Pythagorean identity and tangent identity to find Tanθ if sinθ= -1 and 0 ≤θ<2π radians. (ie. find all tanθ on the unit circle when sinθ= -1).

Respuesta :

Answer:

[tex]\tan(\theta) =[/tex] undefined

Step-by-step explanation:

Given

[tex]\sin(\theta) = -1[/tex]

Required

Determine [tex]\tan(\theta)[/tex]

We know that:

[tex]\sin^2(\theta) + \cos^2(\theta) = 1[/tex]

This gives:

[tex](-1)^2 + \cos^2(\theta) = 1[/tex]

[tex]1 + \cos^2(\theta) = 1[/tex]

Collect like terms

[tex]\cos^2(\theta) = 1 -1[/tex]

[tex]\cos^2(\theta) = 0[/tex]

Take square roots

[tex]\cos(\theta) = \sqrt 0[/tex]

[tex]\cos(\theta) = 0[/tex]

By tan identity

[tex]\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}[/tex]

[tex]\tan(\theta) = \frac{-1}{0}[/tex]

[tex]\tan(\theta) =[/tex] undefined