Respuesta :

Answer:

[tex](a)\ AB = \frac{7}{\sin (B)}[/tex]  [tex]\to Yes[/tex]

[tex](b)\ AB = \frac{24}{\cos (B)}[/tex] [tex]\to Yes[/tex]

[tex](c)\ AB = \frac{24}{\cos (A)}[/tex] [tex]\to No[/tex]

[tex](d)\ AB = \frac{7}{\cos (A)}[/tex]  [tex]\to Yes[/tex]

Step-by-step explanation:

Given

[tex]BC =24[/tex]

[tex]AC = 7[/tex]

Required

Select Yes or No for the given options

[tex](a)\ AB = \frac{7}{\sin (B)}[/tex]  [tex]\to Yes[/tex]

Considering the sine of angle B, we have:

[tex]\sin(B) = \frac{Opposite}{Hypotenuse}[/tex]

[tex]\sin(B) = \frac{7}{AB}[/tex]

Make AB, the subject

[tex]AB = \frac{7}{\sin(B)}[/tex]

[tex](b)\ AB = \frac{24}{\cos (B)}[/tex] [tex]\to Yes[/tex]

Considering the cosine of angle B, we have:

[tex]\cos(B) = \frac{Adjacent}{Hypotenuse}[/tex]

[tex]\cos(B) = \frac{24}{AB}[/tex]

Make AB the subject

[tex]AB = \frac{24}{\cos(B)}[/tex]

[tex](c)\ AB = \frac{24}{\cos (A)}[/tex] [tex]\to No[/tex]

Considering the cosine of angle B, we have:

[tex]\cos(A) = \frac{Adjacent}{Hypotenuse}[/tex]

[tex]\cos(A) = \frac{7}{AB}[/tex]

Make AB the subject

[tex]AB = \frac{7}{\cos(A)}[/tex]

[tex](d)\ AB = \frac{7}{\cos (A)}[/tex]  [tex]\to Yes[/tex]

This has been shown in (c) above

Ver imagen MrRoyal