Respuesta :

Answer:

[tex](a,b) \ne (7,-9)[/tex]

Step-by-step explanation:

Given

[tex]f(x) = ax + b[/tex]

[tex]Interval = [0,4][/tex]

[tex]Area = 16[/tex]

Required

[tex]a, b \ne[/tex]

The area is calculated as:

[tex]Area = \int\limits^a_b {f(x)} \, dx[/tex]

So, we have:

[tex]Area = \int\limits^4_0 {(ax + b)} \, dx[/tex]

Integrate

[tex]Area = (\frac{ax^2}{2} + bx)|\limits^4_0[/tex]

Expand

[tex]Area = [(\frac{a*4^2}{2} + b*4)] - [(\frac{a*0^2}{2} + b*0)][/tex]

[tex]Area = [(\frac{a*4^2}{2} + b*4)][/tex]

[tex]Area = 8a+ 4b[/tex]

This gives:

[tex]8a + 4b = 16[/tex]

Divide through by 4

[tex]2a + b = 4[/tex]

From the list of options, the possible values of a and b are:

[tex](a,b) = (-2,8) \to 2 * -2 + 8 = 4[/tex]  

[tex](a,b) = (1,2) \to 2 * 1 + 2 = 4[/tex]

[tex](a,b) = (3,-2) \to 2 * 3 -2 = 4[/tex]

[tex](a,b) = (5,-6) \to 2 * 5 -6 = 4[/tex]

The odd one is:

[tex](a,b) = (7,-9) \to 2 * 7 -9 = 5[/tex]

Hence:

[tex](a,b) \ne (7,-9)[/tex]

Ver imagen MrRoyal