Answer:
the flywheel's average angular acceleration is -2.05 rad/s²
Explanation:
Note: counterclockwise is positive
clockwise is negative
Given;
initial angular velocity, [tex]\omega _i[/tex] = 5.03 rev/s = [tex]5.03\frac{rev}{s} \times \frac{2\pi \ rad}{1 \ rev} = 31.61 \ rad/s[/tex]
final angular velocity, [tex]\omega_f[/tex]= -2.63 rev/s = [tex]-2.63 \ \frac{rev}{s} \times \frac{2\pi \ rad}{1 \ rev} = -16.53 \ rad/s[/tex]
duration of the flywheel rotation, Δt = 23.5 s
The average acceleration of the flywheel is calculated as;
[tex]a_r = \frac{\Delta \omega}{\Delta t} = \frac{\omega_f - \omega _i}{t_2-t_1} = \frac{-16.53 \ - \ 31.61}{23.5} = -2.05 \ rad/s^2[/tex]
Therefore, the flywheel's average angular acceleration is -2.05 rad/s²