Respuesta :

Answer:

[tex]C = (1,0)[/tex]

[tex]E = (0.8,0)[/tex]

See attachment for C and E

Step-by-step explanation:

Given

[tex]O= (0,0)[/tex] --- Origin

[tex]CO = 1[/tex] --- distance of C to O

Solving (a): Plot point C

Calculate the coordinates of C using distance formula:

[tex]d = \sqrt{(x_2 - x_1)^2 + (y_2 -y_1)^2}[/tex]

Where:

[tex]O= (0,0)[/tex] ---[tex](x_1,y_1)[/tex]

[tex]C = (x,y)[/tex] -- [tex](x_2,y_2)[/tex]

[tex]d = CO = 1[/tex]

So, we have:

[tex]1 = \sqrt{(x - 0)^2 + (y -0)^2}[/tex]

[tex]1 = \sqrt{x^2 + y^2}[/tex]

Square both sides

[tex]1^2 = x^2 + y^2[/tex]

[tex]x^2 + y^2 =1[/tex]

For this solution, we assume y = 0

[tex]x^2 + 0^2 =1[/tex]

[tex]x^2=1[/tex]

Solve for x

[tex]x = 1[/tex]

So, the coordinates of C is: (1,0)

[tex]C = (1,0)[/tex]

Solving (b): Plot point E

We have that E is 4/5 closer to the origin.

This implies that, the ratio is:

[tex]m : n = 4/5:1/5[/tex]

Multiply by 5

[tex]m : n = 4:1[/tex]

So, E is at 4:1 between O and C

Calculate the coordinates of E using:

[tex]E = (\frac{mx_2 + nx_1}{m + n},\frac{my_2 + ny_1}{m + n})[/tex]

Where

[tex]O= (0,0)[/tex] ---[tex](x_1,y_1)[/tex]

[tex]C = (1,0)[/tex] --- [tex](x_2,y_2)[/tex]

[tex]m : n = 4:1[/tex]

[tex]E = (\frac{4*1 + 1 * 0}{4 + 1},\frac{4*0 + 1*0}{4 + 1})[/tex]

[tex]E = (\frac{4}{5},\frac{0}{5})[/tex]

[tex]E = (0.8,0)[/tex]

Ver imagen MrRoyal