Respuesta :

Answer:

[tex] \large \boxed{ \boxed{ \tt{g(4) = - \frac{16}{3} \longrightarrow \: \: Improper \: \: Fraction \: \: }}} \\ \large \boxed{ \boxed{ \tt{g(4) = - 5 \frac{1}{3} \longrightarrow \: \: Mixed \: \: Fraction \: \: }}}[/tex]

Step-by-step explanation:

We are given the function below:

[tex] \large{g(x) = \frac{4x}{3x - 15} }[/tex]

To find g(4), we simply substitute x = 4 in the equation.

[tex] \large{g(4) = \frac{4(4)}{3(4) - 15} }[/tex]

Then evaluate the value and simplify in the simplest form.

[tex] \large{g(4) = \frac{16}{12 - 15} } \\ \large{g(4) = \frac{16}{ - 3} } \\ \large{g(4) = - \frac{16}{3} }[/tex]

Therefore, the value of g(4) is - 16/3

Mixed Fraction Form

[tex] \large{g(4) = - 5 \frac{1}{3} }[/tex]