50 POINTS!!!!
Analyze the graph of the cube root function shown
on the right to determine the transformations of the
parent function. Then, determine the values of a, h,
and k in the general equation.
y = a3x - h + k
h =
k=

50 POINTS Analyze the graph of the cube root function shown on the right to determine the transformations of the parent function Then determine the values of a class=

Respuesta :

Answer:

Let's solve for h.

y=a3x−h+k

Step 1: Flip the equation.

a3x−h+k=y

Step 2: Add -a^3x to both sides.

a3x−h+k+−a3x=y+−a3x

−h+k=−a3x+y

Step 3: Add -k to both sides.

−h+k+−k=−a3x+y+−k

−h=−a3x−k+y

Step 4: Divide both sides by -1.

−h

−1

=

−a3x−k+y

−1

h=a3x+k−y

Answer:

h=a3x+k−y

Let's solve for k.

y=a3x−h+k

Step 1: Flip the equation.

a3x−h+k=y

Step 2: Add -a^3x to both sides.

a3x−h+k+−a3x=y+−a3x

−h+k=−a3x+y

Step 3: Add h to both sides.

−h+k+h=−a3x+y+h

k=−a^3x+h+y

Answer:

k=−a^3x+h+y

Step-by-step explanation:

Answer:

k=−a^3x+h+y

Let's solve for h.

y=a3x−h+k

Step 1: Flip the equation.

a3x−h+k=y

Step 2: Add -a^3x to both sides.

a3x−h+k+−a3x=y+−a3x

−h+k=−a3x+y

Step 3: Add -k to both sides.

−h+k+−k=−a3x+y+−k

−h=−a3x−k+y

Step 4: Divide both sides by -1.

−h

−1

=

−a3x−k+y

−1

h=a3x+k−y

Answer:

h=a3x+k−y

Step-by-step explanation:

Let's solve for k.

y=a3x−h+k

Step 1: Flip the equation.

a3x−h+k=y

Step 2: Add -a^3x to both sides.

a3x−h+k+−a3x=y+−a3x

−h+k=−a3x+y

Step 3: Add h to both sides.

−h+k+h=−a3x+y+h

k=−a^3x+h+y

Answer:

k=−a^3x+h+y