Respuesta :

Answer:

[tex]BD = 4[/tex]

[tex]BC =4\sqrt 3[/tex]

Step-by-step explanation:

Given

The attached triangle

Required

Find BD and BC

Solving BD

Considering angle at D, we have:

[tex]\cos(D) = \frac{Adjacent}{Hypotenuse}[/tex]

[tex]\cos(60) = \frac{BD}{8}[/tex]

Solve for BD

[tex]BD = 8 * \cos(60)[/tex]

[tex]\cos(60) = 0.5[/tex] So:

[tex]BD = 8 * 0.5[/tex]

[tex]BD = 4[/tex]

To solve for BC, we make use of Pythagoras theorem

[tex]CD^2 = BC^2 + BD^2[/tex]

This gives

[tex]8^2 = BC^2 + 4^2[/tex]

[tex]64 = BC^2 + 16[/tex]

Collect like terms

[tex]BC^2 =64-16[/tex]

[tex]BC^2 =48[/tex]

Take square roots

[tex]BC =\sqrt{48[/tex]

Expand

[tex]BC =\sqrt{16*3[/tex]

Split

[tex]BC =\sqrt{16}*\sqrt 3[/tex]

[tex]BC =4\sqrt 3[/tex]