Respuesta :

Answer:

A. Parallelogram LMNP

B. 33

C. 98°

Step-by-step explanation:

LMNP is a parallelogram.

Adjacent angles of a parallelogram are Supplementary.

[tex] \therefore 82\degree +(3x - 1)\degree =180\degree [/tex]

[tex] \therefore (3x - 1+82)\degree =180\degree [/tex]

[tex] \therefore (3x +81)\degree =180\degree [/tex]

[tex] \therefore 3x +81 =180 [/tex]

[tex] \therefore 3x =180-81 [/tex]

[tex] \therefore 3x =99 [/tex]

[tex] \therefore x =\frac{99}{3} [/tex]

[tex] \therefore x =33 [/tex]

[tex] \implies m\angle N= (3x - 1)\degree=(3*33 - 1)\degree=(99-1)\degree = 98\degree [/tex]

[tex] \because m\angle L =m\angle N[/tex]

(Opposite angles of a parallelogram)

[tex] \therefore m\angle L =98\degree [/tex]

Answer:

1 no the quadilateral is parallelogram

2 no .82+82+3x-1+3x-1=360

162+6x=360

6x=198

x=198/6

x=33

3 no angle L =3x-1(opposite angles of a parallelogram are equal)

3*33-1

99-1

98

Step-by-step explanation: