Respuesta :

Answer:

[tex]4.\ \sin E = \cos G[/tex]

Step-by-step explanation:

Given

[tex]\triangle EFG[/tex]

[tex]\angle F = 90^o[/tex] --- right angle

Required

Which of the options is true

In a triangle, we have:

[tex]\angle E + \angle F + \angle G = 180^o[/tex] --- angles in a triangle

Substitute [tex]\angle F = 90^o[/tex]

[tex]\angle E + 90^o + \angle G = 180^o[/tex]

Collect like terms

[tex]\angle E + \angle G = 180^o -90^o[/tex]

[tex]\angle E + \angle G =90^o[/tex]

This implies that E and G are complementary angles.

For complementary angles, E and G;

[tex]\sin E = \cos G[/tex] and [tex]\sin G = \cos E[/tex]

Hence, (4) is true