Respuesta :

Answer:

Length = 5 feet

Breadth = (5/3) feet

Height(depth) = 2 feet

Volume of the entire tank = Length x Breadth x Height  

                                         = [tex]5 \times \frac{5}{3} \times2 = \frac{50}{3}[/tex]   ----------(1)

Water is filled upto a height of (1/3) feet

Volume of water in the tank = Length x Breadth x Height  

                                           = [tex]5 \times \frac{5}{3} \times \frac{1}{3} = \frac{25}{9}[/tex]     -------------(2)

Volume of space needed to be filled = (1) - (2)

                                                         = [tex]\frac{50}{3} -\frac{25}{9} = \frac{150-25}{9} = \frac{125}{9} cubic feet[/tex]

                                           OR

Height of tank needed to be filled = 2 - (1/3) = (5/3) feet

Volume of space =  Length x Breadth x Height of empty tank

                           =  [tex]5 \times \frac{5}{3} \times \frac{5}{3} = \frac{125}{9} cubic \ feet[/tex]