The kinetics of some phase transformations obey the Avrami relationship. Using the fraction transformed-time data given below, determine the total time required for the transformation to go to 92% completion. Fraction transformed Time (s) 0.2 12.6 0.7 25.7 Enter your answer in accordance to the question statement s

Respuesta :

Solution :

Avrami relationship

[tex]$1-y=exp(-kt^n)$[/tex]

[tex]$\ln(1-y)=-kt^n$[/tex]

[tex]$-\ln(1-y)=kt^n$[/tex]

[tex]$\ln\left[\ln\left(\frac{1}{1-y}\right)\right]=\ln k + n \ln t$[/tex]

The fraction transformed is 0.2 at 12.6 s,

[tex]$\ln\left[\ln\left(\frac{1}{1-0.2}\right)\right]=\ln k + n \ln (12.6)$[/tex]

[tex]$-1.5 = \ln k + 2.533 n$[/tex]  .........(i)

The fraction transformed is 0.7 at 25.7 s,

[tex]$\ln\left[\ln\left(\frac{1}{1-0.7}\right)\right]=\ln k + n \ln (25.7)$[/tex]

[tex]$0.5 = \ln k + 3.24 n$[/tex]   ..............(ii)

Subtract (ii) from (i),

-2 = -0.71 n

n = 2.81

Therefore, from (i),

[tex]$-1.5 = \ln k + 2.533 (2.81)$[/tex]

k = 0.000181

Now if the fraction transformed is 0.92, then

[tex]$kt^n=-\ln (1-y)$[/tex]

[tex]$t=\left[\frac{-\ln (1-y)}{k}\right]^{\frac{1}{n}}$[/tex]

[tex]$t=\left[\frac{-\ln (1-0.92)}{0.000181}\right]^{\frac{1}{2.81}}$[/tex]

t = 29.8528 s